Upper and Lower Bounds of Solutions for Fractional Integral Equations
نویسندگان
چکیده
In this paper we consider the integral equation of fractional order in sense of Riemann-Liouville operator u(t) = a(t)I[b(t)u(t)] + f(t) with m ≥ 1, t ∈ [0, T ], T < ∞ and 0 < α < 1. We discuss the existence, uniqueness, maximal, minimal and the upper and lower bounds of the solutions. Also we illustrate our results with examples. Full text
منابع مشابه
The eigenvalue for a class of singular p-Laplacian fractional differential equations involving the Riemann-Stieltjes integral boundary condition
Keywords: Upper and lower solutions p-Laplacian operator Fractional differential equation Integral boundary condition Eigenvalue a b s t r a c t In this paper, we are concerned with the eigenvalue problem of a class of singular p-Lapla-cian fractional differential equations involving the Riemann–Stieltjes integral boundary condition. The conditions for the existence of at least one positive sol...
متن کاملThe approximate solutions of Fredholm integral equations on Cantor sets within local fractional operators
In this paper, we apply the local fractional Adomian decomposition and variational iteration methods to obtain the analytic approximate solutions of Fredholm integral equations of the second kind within local fractional derivative operators. The iteration procedure is based on local fractional derivative. The obtained results reveal that the proposed methods are very efficient and simple tools ...
متن کاملIterative scheme to a coupled system of highly nonlinear fractional order differential equations
In this article, we investigate sufficient conditions for existence of maximal and minimal solutions to a coupled system of highly nonlinear differential equations of fractional order with mixed type boundary conditions. To achieve this goal, we apply monotone iterative technique together with the method of upper and lower solutions. Also an error estimation is given to check the accuracy of th...
متن کاملGeneralizations of some fractional integral inequalities via generalized Mittag-Leffler function
Fractional inequalities are useful in establishing the uniqueness of solution for partial differential equations of fractional order. Also they provide upper and lower bounds for solutions of fractional boundary value problems. In this paper we obtain some general integral inequalities containing generalized Mittag-Leffler function and some already known integral inequalities have been produced...
متن کاملPositive solutions for discrete fractional initial value problem
In this paper, the existence and uniqueness of positive solutions for a class of nonlinear initial value problem for a finite fractional difference equation obtained by constructing the upper and lower control functions of nonlinear term without any monotone requirement .The solutions of fractional difference equation are the size of tumor in model tumor growth described by the Gompertz f...
متن کامل